
Offensive Technologies Project

Master System and Network Engineering

University of Amsterdam

Firmwall: Protecting hard disk firmware

Jan Laan Niels van Dijkhuizen
jan.laan@os3.nl niels.vandijkhuizen@os3.nl

May, 2014

1

Firmwall: Protecting hard disk firmware

Abstract

This paper describes our method to protect firmware of SATA and
PATA hard disks. This method monitors ATA commands, and blocks
potentially malicious commands reading from and writing to the disk.
This is done by disabling the classic x86 privileged Input/Output to
the hard disk, and by intercepting the ioctl system call. This inter-
ception is done with a kernel module. Whenever a direct ATA com-
mand is issued through the ioctl function, it is checked against a
whitelist of defined ATA commands. If the command does not exist
in this whitelist, it will be blocked and the responsible program will
be terminated. This effectively blocks firmware uploads / downloads
or manipulation. Our module can be controlled from user space with
a manager. It also supports a configurable whitelist for applications
that are allowed to perform non-defined commands. We can succes-
fully block non-defined ATA commands and the performance impact
of our module is not noticeable during regular desktop usage.

1

Firmwall: Protecting hard disk firmware CONTENTS

Contents
1 Introduction 3

2 Scope 3

3 Related research 3

4 Background 4
4.1 ioctl . 4

4.1.1 SG_IO . 4
4.1.2 HDIO_DRIVE_TASKFILE 6

5 Approach 6
5.1 Blocking suspicious ioctls 6

6 Results 7
6.1 Vendor-specific commands 7
6.2 Prelude IDS . 8
6.3 Performance impact . 8

7 Future work 8

8 Conclusion 9

9 References 10

Appendix A: Source code 11

Appendix B: Performance tests 12
A dd test . 12
B cp test . 13

Appendix C: SCSI commands 14

Appendix D: ATA commands 14

Appendix E: Prelude IDS rule 15

2

Firmwall: Protecting hard disk firmware 1 Introduction

1 Introduction
Hard drive firmware is an interesting attack vector for rootkit/back-
door creators. The firmware is not checked by regular anti-virus or
intrusion detection solutions. Once malicious firmware has been in-
stalled, it can run virtually undetected. Publications of NSA inter-
nal documents as IRATEMONK [1] or Jeroen Domburg’s hard disk
rootkit [2] have shown this is a very real threat. In this paper, we
present a method to log and block suspicious hard disk access.

2 Scope
There are essentially three methods to detect changes in firmware:

• Sandboxing software
• Comparing cryptographic hashes of earlier made firmware dumps

with the ’current’ state (signature-based approach).
• Detecting system calls which imply firmware reads/writes (be-

havioural approach).
The signature-based approach has been researched [3] [4], although
there is much work that remains to be done there. This is due to the
fact that vendors use proprietary methods to embed their code in hard
disks.

Sandboxing is a difficult task, as it is hard to verify results of a
sandboxing test. The sandbox is also running within an Operating
System, which can still directly access the hardware.

The third method has not yet been researched to our knowledge.
We are limiting ourselves to the behavioural approach: monitoring and
blocking system calls that might manipulate firmware in a malicious
way.

The current Debian testing (Jessie) distribution will be used as
operating system of choice, this distribution is running a Linux 3.x
kernel. Due to time constraints, this research will be limited to ATA
hard disks, as these devices usually store a great amount of sensitive
data, and as such are an interesting attack target.

3 Related research
Research by Ariel Berkman [5] has shown it is possible to access the
negative cylinders (also known as ’service area’ or ’firmware area’) on
a hard disk. This area can be used to hide data. His proof-of-concept
tool can dump this data area. Jeroen Domburg [2] has shown that it
is possible to access and modify a hard disk’s firmware, and also that
it is possible to read out the entire hard disk firmware. He proved that
one can alter for example the /etc/shadow file once it is in the hard
disk’s cache. This altered cache will then be used by the operating
system, allowing a non-privileged user to gain root access.

3

Firmwall: Protecting hard disk firmware 4 Background

4 Background
To protect a system, various measures have to be taken. There are in
general three methods to access a hard disk on I/O level. These are
the following:

• The IA32/x86 architecture uses ioperm/iopl to set the I/O ac-
cess level for a program. After the right level is set the program
can sent bytes directly to the device. When these methods are
allowed, a root user has unlimited access to hardware devices.

• Similar in function to the above is /dev/port, though reading
and writing with this device is slower. One must have write access
to this device in order to use it. Usually only the root user has
these rights for security reasons.

• The clean and architecture independent way to access I/O is
ioctl.

The first two are only used on IA32/x86 machines and they are
rarely used in production. Therefor these can be disabled entirely on
a hardened system. The third method will be explained in detail in
the following section.

4.1 ioctl
Ioctl is a generic system call. Ioctl is an abbreviation for Input-Output
control. It facilitates I/O for any connected device. This includes hard
disks, sound cards, USB, PCI cards, etc. Exact implementation of the
ioctl function depends on the device being accessed.

The function has three parameters. The first is a file descriptor,
specifying the device to access. The second parameter is a request code
which specifies which function to call on for that device. This is also
often referred to as an ioctl. The third parameter is implementation-
specific, and can differ per request code. This can be a simple value, or
a pointer to a complex data structure. For example, the SG_IO ioctl
has as a third parameter a pointer to a struct with 22 members, some
of which are again void pointer or char pointers.

i n t i o c t l (in t d , in t request , . . .) ;

There are two interesting ioctls regarding possible access to hard
disk firmware. There are many more, but these provide generic access
to a hard disks device. SG_IO is the standard for current Linux kernels
(3.x) , while HDIO_DRIVE_TASKFILE has ioctls for the older IDE
subsystem which is deprecated nowadays.

4.1.1 SG_IO
SG_IO is the scsi-generic ioctl [6] for accessing a hard disk. An SG_IO
call can encompass any SCSI command supported by the device. These
commands (opcodes) are specified in the SCSI standard [7]. This stan-
dard defines common operations such as READ, WRITE, INQUIRY.

4

Firmwall: Protecting hard disk firmware 4.1 ioctl

Interesting operations are the SCSI ATA Pass-through 12 (0xA1)
and 16 (0x85) commands. These commands carry an ATA command
within them, tunneling one protocol within another. This translation
process is described in the SAT-2 standard [8].

The ATA commands, as defined in the ATA standard [9], can be
categorized in different groups. The most important groups are:

• defined, defined in the standard, devices should implement these
• reserved, reserved for use in future standards.
• obsolete, were defined, but not used anymore
• retired, similar to obsolete
• vendor specific, A vendor is free to use this command as he

sees fit.

A complete overview of these commands can be found in appendix
D. Figure 1 shows the implementation of the above in the Linux kernel.
SCSI commands take place at the upper- and middle level, libATA
takes care of the translation to ATA and passes these commands to
the lower level (the device driver).

Figure 1: Linux storage driver layers

5

Firmwall: Protecting hard disk firmware 5 Approach

4.1.2 HDIO_DRIVE_TASKFILE
The functionality of HDIO_DRIVE_TASKFILE is generally similar
to SG_IO ioctl. The difference is that SG_IO is for /dev/sdX devices,
and HDIO_DRIVE_TASKFILE for /dev/hdX devices. The kernel
option CONFIG_IDE_TASKFILE_IO needs to be set in order to use
this ioctl. This option was removed somewhere in the 2.6-series kernel
and the use of direct ATA/IDE is deprecated in the 3.x kernels.

5 Approach
As mentioned in the previous section, there are in general three meth-
ods to send direct IO commands to a hard disk under Linux. Using
iopl/ioperm, using /dev/port, or using ioctl.

The first two are rarely used in normal operation, and can be
blocked by the Grsecurity patches [10]. The third one, ioctl, is a
frequently-used system call, and hence cannot be blocked entirely. The
approach of this research is to monitor calls to ioctl and block (po-
tentially) malicious system calls.

5.1 Blocking suspicious ioctls
A loadable kernel module is created to facilitate monitoring and block-
ing ioctl calls. This module listens to all ioctl calls. When a sus-
picious ioctl call is detected, it is blocked, otherwise the call is per-
formed as usual. This process is visualized in figure 2. The module
patches the system call table so that all calls to the ioctl function
will pass through the module’s custom ioctl function. This custom
function will then decide whether to pass the call through to the real
ioctl function or to block the call.

Figure 2: ioctl interception

6

Firmwall: Protecting hard disk firmware 6 Results

Defined ATA commands are not classified as suspicious, and these
are whitelisted by the module. All other commands (reserved, obsolete,
retired and vendor specific) are considered suspicious. These do not
occur in normal operation. As such, when an application performs
one of these calls, it is suspicious by default. A list of all commands,
categorized, can be found in appendix D.

The module has a simple management interface, which can perform
two actions. The first one allows the module to be turned on or off.
The second one is a whitelist interface. A user can add a specific
executable to the module’s whitelist. Calls from an executable in the
whitelist will always be performed, and not blocked by the module,
regardless of their suspiciousness. Note that this interface is unsafe.
An attacker with root access can use this to add his own executable to
the whitelist, or to turn off the module entirely. This interface should
be removed or replaced in a production version.

6 Results
Listing 1 shows the output of the created kernel module. Lines 2 and
3 indicate a blocked system call. The program OCZ Toolbox is also
killed. The 0x2285 is the SG_IO ioctl call which contains the non-
defined 0xFE (vendor specific) command. At line 5 OCZ Toolbox is
executed again. Because the program is now in the whitelist, the non-
defined calls made by it are no longer blocked.

1 2014−05−21 11 :21 :49 | Blocking / Monitoring : Enabled
2 2014−05−21 11 :21 :55 | Intercepted : i o c t l (7 , 0x2285) from

PID 2761 , exe : / root /OCZToolbox
3 2014−05−21 11 :21 :55 | Blocked non−def ined command : 0xFE
4 2014−05−21 11 :22 :25 | Added to White l i s t : / root /

OCZToolbox
5 2014−05−21 11 :22 :29 | White l i s t match , sk ipping
6 2014−05−21 18 :46 :19 | White l i s t :
7 2014−05−21 18 :46 :19 | − /usr / sbin / i d l e 3 c t l
8 2014−05−21 18 :46 :19 | − / root /OCZToolbox
9 2014−05−21 18 :58 :51 | Removed from White l i s t : /usr / sbin /

i d l e 3 c t l
10 2014−05−21 19 :00 :22 | Blocking / Monitoring : Disabled
11 2014−05−22 09 :32 :16 | HDFW: Unloaded

Listing 1: Kernel module output

6.1 Vendor-specific commands
Two distinct vendor-specific ATA commands were intercepted. West-
ern Digital uses the vendor specific command 0x80 for communication
with its hard disks. This is illustrated by the idle3-tools1 and fwtool2

1idle3 tools: http://idle3-tools.sourceforge.net/
2fwtool: http://spritesmods.com/?art=hddhack

7

http://idle3-tools.sourceforge.net/
http://spritesmods.com/?art=hddhack

Firmwall: Protecting hard disk firmware 6.2 Prelude IDS

programs. OCZ uses the vendor specific command 0xFE. This is
illustrated by the OCZ Toolbox3 program.

No other in-use vendor-specific commands were identified, and we
have not found any Linux tools from other vendors.

6.2 Prelude IDS
A simple rule for the Prelude IDS system [11] has been created, which
listens for blocked ioctl calls originating from our module. The mod-
ule logs information to the syslog, which will be read by Prelude. The
rule is shown in appendix E. When our module blocks a call, Prelude
detects this and registrates this in it’s database. The result can be
seen in the PreWikka web-interface, see figure 3.

Figure 3: Prelude IDS / Prewikka interface

6.3 Performance impact
For most ioctls, the overhead introduced by the created kernel mod-
ule is one single if-statement and an extra context switch, created by
passing the ioctl through to the real ioctl function.

We performed some simple checks to test the impact of the created
module in normal operation. Test results can be found in appendix
B. From these results it can be concluded that performance impact is
negligible. No significant performance differences were found.

On environments which heavily use ioctl calls, there can be an
impact on performance, however this has not been verified.

7 Future work
The ATA standard and the Linux kernel are both quite complex. While
we feel that we have a good understanding of the relevant parts, and
implemented our module accordingly, it is entirely possible that we
missed an entrance to an ATA hard disk which is not being checked
by our module.

While the module we have created succesfully blocks SCSI Pass-
through ioctl calls to ATA hard disks, intercepting calls to native
SCSI hard disks have not been looked into.

We tested our module on a Desktop computer that is connected
directly to the internet. Unfortunately we did not see real world ATA
hard disk exploits on this machine. It would be very interesting to see
if our module combined with a Grsecurity patched Linux kernel gets
triggered in a honeypot setup.

3OCZ Toolbox: http://ocz.com/consumer/download/firmware

8

http://ocz.com/consumer/download/firmware

Firmwall: Protecting hard disk firmware 8 Conclusion

Our method could be implemented in a cleaner and more coherent
way using a security framework. We believe seccomp_bpf is a potential
candidate framework. OSSEC [12] and Samhain [13] could help to
guarantee the integrity of the binaries we use in our whitelist.

8 Conclusion
The created proof-of-concept shows it is feasible to monitor and block
unwanted system calls to hard drives while maintaining a workable
system.

As a standalone solution the proof-of-concept has limited use, it
should be used in addition to existing hardening methods.

There is still room for improvement, as mentioned in the future
work section. The current management interface is insecure. However,
with some modifications the created kernel module can be turned into
a good addition to Linux device security.

9

Firmwall: Protecting hard disk firmware 9 References

9 References
[1] Der Spiegel. Interactive Graphic: The NSA’s Spy Catalog. http:

//www.spiegel.de/international/world/a-941262.html, dec 2013.
[2] Jeroen van Domburg. Hard Disk Hacking. http://spritesmods.

com/?art=hddhack.
[3] Loïc Duflot, Yves-Alexis Perez, and Benjamin Morin. Run-time

firmware integrity verification: what if you can’t trust your net-
work card. CanSecWest/-core11, Vancouver (Canada), pages 9–
11, 2011.

[4] Yanlin Li, Jonathan M McCune, and Adrian Perrig. Viper: veri-
fying the integrity of peripherals’ firmware. In Proceedings of the
18th ACM conference on Computer and communications security,
pages 3–16. ACM, 2011.

[5] Ariel Berkman. Hiding data in hard-drive’s service areas. 2013.
[6] The Linux SCSI Generic (sg) HOWTO. http://www.tldp.org/

HOWTO/SCSI-Generic-HOWTO/.
[7] SCSI standard, T10. http://www.t10.org.
[8] Mark Overby. SCSI / ATA Translation 2, INCITS 465. http:

//www.t10.org/members/w_sat2.htm.
[9] ATA standard, T13. http://www.t13.org/.

[10] Grsecurity. http://grsecurity.net/.
[11] Prelude IDS. https://www.prelude-ids.org/.
[12] OSSEC IDS. http://www.ossec.net/.
[13] Samhain IDS. http://www.la-samhna.de/samhain/.

10

http://www.spiegel.de/international/world/a-941262.html
http://www.spiegel.de/international/world/a-941262.html
http://spritesmods.com/?art=hddhack
http://spritesmods.com/?art=hddhack
http://www.tldp.org/HOWTO/SCSI-Generic-HOWTO/
http://www.tldp.org/HOWTO/SCSI-Generic-HOWTO/
http://www.t10.org
http://www.t10.org/members/w_sat2.htm
http://www.t10.org/members/w_sat2.htm
http://www.t13.org/
http://grsecurity.net/
https://www.prelude-ids.org/
http://www.ossec.net/
http://www.la-samhna.de/samhain/

Firmwall: Protecting hard disk firmware APPENDICES

Appendix A: Source code
The following function is the custom ioctl function created. This
function sits before the real ioctl function and filters out potentionally
suspicous hard disk calls. The entire source code of the kernel module
and the management interface, as well as a few management scripts
and the created Prelude IDS rule can be found on Github at https:
//github.com/janlaan/firmwall

/*
* Our i o c t l replacement
* Most o f the time ju s t passes through the reques t s to

the r e a l i o c t l funct ion .
* Intercepts , and blocks non−def ined ata commands ,

un le s s the request ing executable i s wh i t e l i s t ed .
*/

asmlinkage in t custom_ioctl (i n t fd , i n t request , void*
arg)

{
in t su sp i c i ou s = 0 ;
sg_io_hdr_t* io_hdr ;
unsigned char* cdb ;
unsigned in t command = 0x9999 ;
s t ruc t hd io_task f i l e * t a s k f i l e ;
i f (request == SG_IO) // t r an s f e r data to device
{

su sp i c i ou s = 1 ;
io_hdr = (sg_io_hdr_t*) arg ;
cdb = io_hdr−>cmdp ;
i f (cdb == NULL)
{

// inva l i d command, cdb should not be nu l l .
su sp i c i ou s = 0 ;

}
e l s e i f (cdb [0] == SG_ATA_12)
{

command = cdb [9] ;
}
e l s e i f (cdb [0] == SG_ATA_16)
{

command = cdb [1 4] ;
}
e l s e
{

in t scsi_cdb_code = cdb [0] ;
pr intk (KERN_WARNING ” [HDFW] ␣Non−ATA␣12␣or␣16

␣command, ␣SCSI␣CDB␣command : ␣%s␣ [0 x%X]\n”
, CDB_OPCODE[scsi_cdb_code] ,
scsi_cdb_code) ;

su sp i c i ou s = 0 ; //dangerous assumption
}

}

11

https://github.com/janlaan/firmwall
https://github.com/janlaan/firmwall

Firmwall: Protecting hard disk firmware APPENDICES

i f (su sp i c i ou s == 1)
{

in t l e v e l = 9999 , i ;
f o r (i = 0 ; i < ATA_DEFINED_SIZE; i++)
{

i f (command == ATA_DEFINED[i])
{

l e v e l = 0 ;
continue ;

}
}
i f (l e v e l > 0)
{

in t wh i t e l i s t ed = −1;
in t request ingp id = current−>pid ;
char * exename = ”” ;
exename = current_exename (exename) ;
wh i t e l i s t ed = check_white l i s t (exename) ;
i f (wh i t e l i s t ed != 0)
{

pr intk (KERN_CRIT ” [HDFW] ␣ Intercepted : ␣ i o c t l
(%d , ␣0x%X)␣from␣PID␣%d , ␣exe : ␣%s\n” , fd ,
request , request ingpid , exename) ;

pr intk (KERN_CRIT ” [HDFW] ␣Blocked␣non−def ined
␣command : ␣0x%X\n” , command) ;

send_sig (SIGKILL , current , true) ;
return EINVAL;

}
e l s e
{

pr intk (KERN_WARNING ” [HDFW] ␣White l i s t ␣match ,
␣ sk ipping \n”) ;

}
}

}

return r e a l_ i o c t l (fd , request , arg) ;
}

Listing 2: Source code of ioctl interception function

Appendix B: Performance tests
A dd test
Without our kernel module active:

−=fi rmwal l=−(root)/# / etc / i n i t . d/hdfw_service stop ; f o r
i in 1 2 3 4 ; do dd i f=/dev/ zero o f=/dev/sdb1 bs=1G
count=1 o f l a g=d i r e c t ; done

HDFW stopped

1+0 records in

12

Firmwall: Protecting hard disk firmware APPENDICES

1+0 records out
1073741824 bytes (1 . 1 GB) copied , 11.2396 s , 95.5 MB/s
1+0 records in
1+0 records out
1073741824 bytes (1 . 1 GB) copied , 11.2419 s , 95.5 MB/s
1+0 records in
1+0 records out
1073741824 bytes (1 . 1 GB) copied , 11.2186 s , 95.7 MB/s
1+0 records in
1+0 records out
1073741824 bytes (1 . 1 GB) copied , 11.2078 s , 95.8 MB/s

Listing 3: dd Performance test, HDFW off

With our kernel module active:

−=fi rmwal l=−(root)/# / etc / i n i t . d/hdfw_service s tatus ;
f o r i in 1 2 3 4 ; do dd i f=/dev/ zero o f=/dev/sdb1 bs
=1G count=1 o f l a g=d i r e c t ; done

HDFW kerne l module i s loaded

1+0 records in
1+0 records out
1073741824 bytes (1 . 1 GB) copied , 11.225 s , 95.7 MB/s
1+0 records in
1+0 records out
1073741824 bytes (1 . 1 GB) copied , 11.2439 s , 95.5 MB/s
1+0 records in
1+0 records out
1073741824 bytes (1 . 1 GB) copied , 11.2216 s , 95.7 MB/s
1+0 records in
1+0 records out
1073741824 bytes (1 . 1 GB) copied , 11.2371 s , 95.6 MB/s

Listing 4: dd Performance test, HDFW on

B cp test
Without our kernel module active:

−=fi rmwal l=−(root)/# / etc / i n i t . d/hdfw_service stop ; f o r
i in 1 2 3 4 ; do time cp −R ./ f a k e f i l e s / /mnt/sdb1 / ;
rm −R /mnt/sdb1/ f a k e f i l e s ; done

HDFW stopped

r e a l 0m10.367 s
user 0m0.032 s
sys 0m5.792 s

r e a l 0m10.396 s
user 0m0.016 s
sys 0m5.828 s

13

Firmwall: Protecting hard disk firmware APPENDICES

r e a l 0m10.593 s
user 0m0.028 s
sys 0m5.780 s

r e a l 0m9.928 s
user 0m0.024 s
sys 0m5.796 s

Listing 5: cp Performance test, HDFW off

With our kernel module active:

−=fi rmwal l=−(root)/# / etc / i n i t . d/hdfw_service s tatus ;
f o r i in 1 2 3 4 ; do time cp −R ./ f a k e f i l e s / /mnt/
sdb1 / ; rm −R /mnt/sdb1/ f a k e f i l e s ; done

HDFW kerne l module i s loaded

r e a l 0m10.771 s
user 0m0.064 s
sys 0m5.880 s

r e a l 0m11.217 s
user 0m0.004 s
sys 0m5.820 s

r e a l 0m10.160 s
user 0m0.040 s
sys 0m5.800 s

r e a l 0m9.996 s
user 0m0.040 s
sys 0m5.772 s

Listing 6: cp Performance test, HDFW on

Appendix C: SCSI commands
A complete list of SCSI commands can be found at the T10 website
at http://www.t10.org/lists/op-num.htm. For this research only the
ATA PASS-THROUGH commands are inspected (0x85 and 0xA1).

Appendix D: ATA commands
The following list of all ATA commands was extracted from the ATA
standard at http://www.t13.org. They are categorized by usage type.

14

http://www.t10.org/lists/op-num.htm
http://www.t13.org

Firmwall: Protecting hard disk firmware APPENDICES

Figure 4: ATA commands categorized

Appendix E: Prelude IDS rule
The below rule can be added to the Prelude IDS system. When our
module is running, any alerts will be logged by Prelude.

HDFW: Loadable Linux kerne l module f o r monitoring and
blocking su sp i c i ou s hard disk a c t i v i t y .

This i s the Prelude−LML ru l e s e t be loning to HDFW.

regex=Intercepted : i o c t l \([0−9]+ , 0x[0−9]+\) from PID
([0−9]+) , exe : (. *) ; \

c l a s s i f i c a t i o n . text=Denied i o c t l acce s s ; \
id=901; \
r e v i s i on =1; \
analyzer (0) . name=HDFW; \
analyzer (0) . manufacturer=http ://www. os3 . nl ; \
analyzer (0) . c l a s s=In t eg r i t y ; \
assessment . impact . s e v e r i t y=high ; \
assessment . impact . completion=f a i l e d ; \
assessment . impact . type=f i l e ; \
assessment . impact . d e s c r i p t i on=Process ID $1 ($2) t r i e d

to acces s a storage device via i o c t l ; \
source (0) . process . name=$2 ; \
source (0) . process . pid=$1 ; \
l a s t ;

Listing 7: HDFW Prelude rule

15

	Introduction
	Scope
	Related research
	Background
	ioctl
	SG_IO
	HDIO_DRIVE_TASKFILE

	Approach
	Blocking suspicious ioctls

	Results
	Vendor-specific commands
	Prelude IDS
	Performance impact

	Future work
	Conclusion
	References
	Appendix A: Source code
	Appendix B: Performance tests
	dd test
	cp test

	Appendix C: SCSI commands
	Appendix D: ATA commands
	Appendix E: Prelude IDS rule

